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ABSTRACT 
In this work, we present a numerical solution of nonlinear fredholm integral equations using Leibnitz-Haar wavelet 

collocation method. Properties of haar wavelet and its operational matrix is utilized to convert into a system of 

algebraic equations, solving these equations using MATLAB to compute the required Haar coefficients. The 

numerical result of the proposed method is presented in comparison with the solutions given in the literature [3, 18 

& 19] of the illustrative examples. Error analysis is worked out, which shows the efficiency of the method. 

 

KEYWORDS: Operational Matrix, Leibnitz-Haar Wavelet Collocation Method (LHWCM), Nonlinear Fredholm 

Integral Equations. 

 

     INTRODUCTION
Integral equations find its applications in various fields of science and engineering. There are several numerical 

methods for approximating the solution of nonlinear Fredholm integral equations are known and many different 

basic functions have been used [1-7]. In numerical analysis solving integral equations are reducing it to a system of 

equations. There are various methods to solve integral equations such as Adomian decomposition method, 

successive substitutions, Laplace transformation method, Picard's method etc [22]. 

Wavelets theory is a relatively new and an emerging tool in applied mathematical research area. It has been applied 

in a wide range of engineering disciplines; particularly, signal analysis for waveform representation and 

segmentations, time-frequency analysis and fast algorithms for easy implementation. Wavelets permit the accurate 

representation of a variety of functions and operators. Moreover, wavelets establish a connection with fast numerical 

algorithms [8-9]. Since from 1991 the various types of wavelet method have been applied for the numerical solution 

of different kinds of integral equations, a detailed survey on these papers can be found in [10]. The solutions are 

often quite complicated and the advantages of the wavelet method get lost. Therefore any kind of simplification is 

welcome. One possibility for it is to make use of the Haar wavelets, which are mathematically the simplest wavelets. 

Haar wavelet methods are applied for different type of problems in [10-17]. Lepik et al. [18], Babolian et al. [19] 

and Aziz et al. [20] have applied the Haar wavelet method for solving nonlinear Fredholm integral equations. In the 

present work, a new approach for the numerical solution of nonlinear fredholm integral equations using Leibnitz-

Haar wavelet collocation method is proposed.  

The article is organized as follows: In Section 2, the properties of Haar wavelets and its operational matrix is given. 

Section 3 is devoted to the method of solution. In section 4, we report our numerical results and demonstrated the 

accuracy of the proposed scheme. Conclusion is discussed in section 5. 

 

PROPERTIES OF HAAR WAVELETS 
  Haar wavelets 

The scaling function 1( )h x  for the family of the Haar wavelet is defined as 
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The Haar Wavelet family for [0,1)x  is defined as, 
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where 2lm  , 0,1,..., ,l J  J is the level of resolution; and 0,1,..., 1k m   is the translation parameter. 

Maximum level of resolution is J . The index i  in Eq. (2) is calculated using 1i m k   . In case of minimal 

values 1, 0m k 
 
then 2i  . The maximal value of i  is

12JN  . 

Let us define the collocation points 
0.5

, 1,2,...,j

j
x j N

N


  , Haar coefficient matrix  , ( )i jH i j h x

 

which has the dimension N N . For instance, 3 16J N   , then we have 

 

1     1     1     1     1     1     1     1     1     1     1     1     1     1     1     1

1     1     1     1     1     1     1     1    -1    -1    -1    -1    -1    -1    -1    -1

1     1    

H 16,16 

 1     1    -1    -1    -1    -1     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     1     1     1    -1    -1    -1    -1

1     1    -1    -1     0     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     1     1    -1    -1     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1     1    -1    -1     0     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     1     1    -1    -1

1    -1     0     0     0     0     0     0     0     0     0     0     0     0     0     0

0     0     1    -1     0     0     0     0     0     0     0     0     0     0     0     0

0     0     0     0     1    -1     0     0     0     0     0     0     0     0     0     0

0     0     0     0     0     0     1    -1     0     0     0     0     0     0     0     0

0     0     0     0     0     0     0     0     1    -1     0     0     0     0     0     0

0     0     0     0     0     0     0     0     0     0     1    -1     0     0     0     0

0     0     0     0     0     0     0     0     0     0     0     0     1    -1     0     0

0     0     0     0     0     0     0     0     0     0     0     0     0     0     1    -1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

Operational Matrix of Haar Wavelet 

The operational matrix P which is an N square matrix is defined by   

               

1,

0

( ) ( )

x

i iP x h t dt 
  

  

     

(3)

 

often, we need the integrals 
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1

,

1
( ) ... ( ) ( ) ( )

( 1)!

x x x x

r r

r i i i

A A A A

r times

P x h t dt x t h t dt
r





  
   

   

(4) 

1,2,..., 1, 2,..., .r n and i N   

For 1,r   corresponds to the function 1, ( )iP x  , with the help of (2) these integrals can be calculated analytically, 

we get 

𝑃1,𝑖(𝑥)={
𝑥 − 𝛼       𝑓𝑜𝑟   𝑥 ∈ [𝛼, 𝛽)

𝛾 − 𝑥       𝑓𝑜𝑟   𝑥 ∈ [𝛽, 𝛾)

0                      𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                          (5) 

                                        𝑃2,𝑖(𝑥)=

{
 
 

 
 
1

2
(𝑥 − 𝛼)2                    𝑓𝑜𝑟   𝑥 ∈ [𝛼, 𝛽)

1

4𝑚2 −
1

2
(𝛾 − 𝑥)2      𝑓𝑜𝑟   𝑥 ∈ [𝛽, 𝛾)

1

4𝑚2                              𝑓𝑜𝑟   𝑥 ∈ [𝛾, 1)

0                                         𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                (6) 

In general, the operational matrix of integration of 
thr order   is given as     

       𝑃𝑟,𝑖(𝑥)=

{
 
 

 
 
1

𝑟!
(𝑥 − 𝛼)𝑟                                                                           𝑓𝑜𝑟   𝑥 ∈ [𝛼, 𝛽)

1

𝑟!
{(𝑥 − 𝛼)𝑟 − 2(𝑥 − 𝛽)𝑟}                                             𝑓𝑜𝑟   𝑥 ∈ [𝛽, 𝛾)

1

𝑟!
{(𝑥 − 𝛼)𝑟 − 2(𝑥 − 𝛽)𝑟 + (𝑥 − 𝛾)𝑟}                       𝑓𝑜𝑟   𝑥 ∈ [𝛾, 1)

0                                                                                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

       (7) 

For instance, 𝐽=3 ⇒ N = 16, then we have 

1,

 1     3     5     7     9    11    13    15    17    19    21    23    25    27    29    31

 1     3     5     7     9    11    13    15    15    13    11     9     7     5 

1

    3     1

 

(16,16
32

)iP 

1     3     5     7     7     5     3     1     0     0     0     0     0     0     0     0

 0     0     0     0     0     0     0     0     1     3     5     7     7     5     3     1

 1     3     3     1     0     0     0     0     0     0     0     0     0     0     0     0

 0     0     0     0     1     3     3     1     0     0     0     0     0     0     0     0

 0     0     0     0     0     0     0     0     1     3     3     1     0     0     0     0

 0     0     0     0     0     0     0     0     0     0     0     0     1     3     3     1

 1     1     0     0     0     0     0     0     0     0     0     0     0     0     0     0

 0     0     1     1     0     0     0     0     0     0     0     0     0     0     0     0

 0     0     0     0     1     1     0     0     0     0     0     0     0     0     0     0

 0     0     0     0     0     0     1     1     0     0     0     0     0     0     0     0

 0     0     0     0     0     0     0     0     1     1     0     0     0     0     0     0

 0     0     0     0     0     0     0     0    0     0     1     1     0     0     0     0

 0     0     0     0     0     0     0     0     0     0     0     0     1     1     0     0

 0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     1

 
 
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 
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 
 
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 
 
 
 
 
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 
 
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 
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 
 
 
 

and 
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2,

 1     9    25    49    81   121   169   225   289   361   441   529   625   729   841   961

 1     9    25    49    81   121   169   225   287   343   391   431   463   

1

487   503   51

(
204

16,16)
8

iP 

1

 1     9    25    49    79   103   119   127   128   128   128   128   128   128   128   128

 0     0     0     0     0     0     0     0     1     9    25    49    79   103   119   127

 1     9    23    31    32    32    32    32    32    32    32    32    32    32    32    32

 0     0     0     0     1     9    23    31    32    32    32    32    32    32    32    32

 0     0     0     0     0     0     0     0     1     9    23    31    32    32    32    32

 0     0     0     0     0     0     0     0     0     0     0     0     1     9    23    31

 1     7     8     8     8     8     8     8     8     8     8     8     8     8     8     8

 0     0     1     7     8     8     8     8     8     8     8     8     8     8     8     8

 0     0     0     0     1     7     8     8     8     8     8     8     8     8     8     8

 0     0     0     0     0     0     1     7     8     8     8     8     8     8     8     8

 0     0     0     0     0     0     0     0     1     7     8     8     8     8     8      8

 0     0     0     0     0     0     0     0     0     0    1    7     8     8     8     8

 0     0     0     0     0     0     0     0     0     0     0     0     1     7     8     8

 0     0     0     0     0     0     0     0     0     0     0     0     0     0     1     7

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

LEIBNITZ-HAAR WAVELET COLLOCATION METHOD (LHWCM) 
In this section, we present a Leibnitz-Haar wavelet collocation method (LHWCM) for solving nonlinear Fredholm 

integral equation of the second kind, 

                                                   

1

0

( ) ( ) ( , , ( )) ,u x f x K x t u t dt                                    (8) 

where K(x, t, u(t)) is a nonlinear function defined on [0, 1]×[0, 1] are the known function K(x, t, u(t)) is called the 

kernel of the integral equation while the unknown function u(x) represents the solution of the integral equation. The 

conversion of the integral equations into an equivalent differential equations. The conversion is achieved by using 

the well-known Leibnitz rule [22] for differentiation of integrals. 

Let,   

( )

( )

( ) ( , ) ( )

h x

g x

F x K x t u t dt                             (9) 

Then differentiation of the integral in (9) exists and is given by  
( )

( )

( ) ( ) ( , )
'( ) ( , ( )) ( ( ( ))) ( , ( )) ( ( ( ))) ( )

h x

g x

dF dh x dg x K x t
F x K x h x u h x K x g x u g x u t dt

dx dx dx x


   

  

 (10) 

If g(x) =0 and h(x) =1, where 0 & 1 are fixed constants, then the Leibnitz rule (10) reduces to  
1

0

( , )
'( ) ( )

dF K x t
F x u t dt

dx x


 

               (11) 

A numerical computation procedure is as follows: 

Step 1: Differentiating (8) twice w.r.t x, using Leibnitz rule (10) we get, 

                                         
( ) ( ) ( )u x f x F x                                    (12) 

  
( ) ( ) ( )u x f x F x  

     
                                                (13)

                                          
 

Subject to initial conditions,  (0) , '(0)u u                                                    (14)                                        
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Step 2: Applying Haar wavelet collocation method, 

Let us assume that,          
1

( ) ( )
N

i i

i

u x a h x


                                                   (15) 

Step 3: By integrating (15) twice and using (14), we get (16) & (17), 

            

1,

1

( ) ( )
N

i i

i

u x a p x


           (16) 

                                   

  2,

1

( ) ( )
N

i i

i

u x x a p x 


                   (17) 

Step 4: Substituting (15) – (17) in the differential equation (13), which reduces to the nonlinear system of N 

equations with N unknowns and then Newton’s method can be used to find the Haar coefficients , 1,2,..., .ia i N  

Substituting Haar coefficients in (17) to obtain the required approximate solutions of equation (8). 

 

ILLUSTRATIVE EXAMPLES   
In this section, we consider the some of the illustrative examples from the literature to demonstrate the capability of 

the method and error function is presented to verify the accuracy and efficiency of the numerical results: 
 

 
2

max max
1

( ) ( ) ( ) ( )
n

e i a i e i a i

i

Error function E u x u x u x u x


    
 

where eu and au are the exact and approximate solutions respectively. 

Example 1. First, consider the Nonlinear Fredholm Integral equation [19], 
1

2 3 1

0

( ) [ ( )] , 0 1,x t xu x e u t dt e x    
 

         (18) 

with initial conditions (0) 1.u  Which has the exact solution ( ) xu x e .  

Differentiating (18) w.r.t x and using Leibnitz rule (10), its equivalent differential equation (20), 
1

1 2 3

0

'( ) [ ( )]x x tu x e e u t dt            (19) 

                                      
'( ) ( ) 0u x u x                                                                       (20) 

Let us assume that,                
1

'( ) ( )
N

i i

i

u x a h x


                                                               (21)      

integrating (21), we get 

                 
1,

1

( ) 1 ( )
N

i i

i

u x a p x


 
          

                                                    (22) 

substituting (21)-(22) in the differential equation (20), we get the system of N equations with N unknowns 

  1,

1 1

( ) 1 ( ) 0
N N

i i i i

i i

a h x a p x
 

 
   
 

                                         (23) 

solving (23) using Newton’s Method to obtain Haar wavelet coefficients 𝑎𝑖’s for N = 16 i.e., [1.7192   -0.4212   -

0.1615   -0.2662   -0.0710   -0.0911   -0.1170   -0.1503   -0.0333  -0.0377  -0.0428   -0.0485   -0.0549   -0.0622   -

0.0705   -0.0799 ]. Substituting 𝑎𝑖’s, in (22) and obtained the required LHWCM solutions and is presented in table 1 

& fig 1, in comparison with the exact and existing solutions. Error analysis is shown in table 2, which justifies the 

efficiency of the LHWCM. 
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Table 1: Comparison of Exact and LHWCM of Example 1, for N = 32. 

x Exact LHWCM Method [19] 
Error  

(LHWCM) 

Error 

(Method [19]) 

0.1 1.105170918 1.105314848 1.107217811 1.4e-04 2.0e-03 

0.2 1.221402758 1.221571768 1.218102916 1.6e-04 3.3e-03 

0.3 1.349858808 1.350056580 1.341165462 1.9e-04 8.7-03 

0.4 1.491824698 1.492055414 1.474918603 2.3e-04 1.6e-02 

0.5 1.648721271 1.648989674 1.667402633 2.6e-04 1.8e-02 

0.6 1.822118800 1.822430264 1.833861053 3.1e-04 1.1e-02 

0.7 2.013752707 2.014113322 2.016679830 3.6e-04 2.9e-03 

0.8 2.225540928 2.225957586 2.217456630 4.1e-04 8.1e-03 

0.9 2.459603111 2.460083612 2.437978177 4.8e-04 2.1e-02 

 

Table 2: Maximum error analysis of Example 1. 

N max ( )E LHWCM  

4 3.0e-02 

8 8.1e-03 

16 2.1e-03 

32 5.4e-04 

64 1.3e-04 

128 3.4e-05 

 
Fig 1: Comparison of LHWCM with exact solution for N=64 of Example 1. 
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Example 2. Next, consider the Nonlinear Fredholm Integral equation [19], 
1 3

3

0

(1 2 )
( ) [ ( )] , 0 1

9

x e x
u x xt u t dt e x


       (24) 

with initial conditions (0) 1, '(0) 1.u u  Which has the exact solution ( ) xu x e .  

Differentiating (24) w.r.t  x, using Leibnitz rule (10) which reduces to the differential equation (26),  
13

3

0

(1 2 )
'( ) [ ( )] ,

9

x e
u x e t u t dt


                               (25) 

  
''( ) 0xu x e                                                                     (26) 

Let us assume that,                    
1

''( ) ( )
N

i i

i

u x a h x


                                                                 (27) 

integrating (27) twice, 

                 
1,

1

'( ) ( ) 1
N

i i

i

u x a p x


 
                  

                                         (28) 

2,

1

( ) ( ) 1
N

i i

i

u x a p x x


  
 

  

                            

(29) 

substituting (27)-(29) in (26), we get the system of N equations with N unknowns. 

                         
1

( ) 0
N

x

i i

i

a h x e


 
  

                                                           (30) 

solving (30) using Newton’s Method to obtain Haar wavelet coefficients  𝑎𝑖’s  for N = 16 i.e., [1.7180  -0.4208   -

0.1613    -0.2660    -0.0709  -0.0910  -0.1169  -0.1501  -0.0333  -0.0377   -0.0427    -0.0484  -0.0549  -0.0622  -

0.0704   -0.0798]. Substituting 𝑎𝑖’s, in (29) and obtained the required LHWCM solutions and is presented in table 3 

& fig 2 in comparison with the exact and existing solutions. Error analysis is shown in table 4, which justifies the 

efficiency of the LHWCM. 

 

Table 3: Comparison of Exact and LHWCM of Example 2, for N = 32. 

x Exact LHWCM Method [19] 
Error  

(LHWCM) 

Error 

(Method [19]) 

0.1 1.105170918 1.105179274 1.114627560 8.3e-06 9.5e-03 

0.2 1.221402758 1.221419913 1.226758840 1.7e-05 5.4e-03 

0.3 1.349858808 1.349885259 1.345458179 2.6e-05 4.4e-03 

0.4 1.491824698 1.491860995 1.480202470 3.6e-05 1.1e-02 

0.5 1.648721271 1.648768022 1.671769819 4.6e-05 2.3e-02 

0.6 1.822118800 1.822176677 1.838854903 5.7e-05 1.6e-02 

0.7 2.013752707 2.013822451 2.022118086 6.9e-05 8.4e-03 

0.8 2.225540928 2.225623359 2.223139077 8.2e-05 2.4e-03 

0.9 2.459603111 2.459699136 2.443684898 9.6e-05 1.5e-02 
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Table 4: Maximum error analysis of Example 2. 

 

 

 
Fig 2: Comparison of LHWCM with exact solution for N=64 of Example 2. 

 

Example 3. Now, consider the Nonlinear Integral equation [18], 
1

2

0

( ) (2 2 1) 2 ( ) , 0 1,
3

x
u x x xt u t dt x               (31) 

with initial conditions (0) 2, '(0) 0.u u 
, 

Which has the exact solution 
2( ) 2u x x  .  

Differentiating (31) w.r.t x, and using Leibnitz rule (10) which reduces to the differential equation (33),  

                                     

1

0

1
'( ) 2 (2 2 1) ( ) ,

3
u x x t u t dt                          (32) 

        
''( ) 2 0u x                                                                        (33) 
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N max ( )E LHWCM  

4 5.9e-03 

8 1.6e-03 

16 4.2e-04 

32 1.0e-04 

64 2.7e-05 

128 6.8e-06 
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Let us assume that,                    
1

''( ) ( )
N

i i

i

u x a h x


                                                              (34) 

integrating (34) twice, 

               
1,

1

'( ) ( )
N

i i

i

u x a p x



                 

                                          (35) 

     
2,

1

( ) ( ) 2
N

i i

i

u x a p x


 
                                               

(36) 

substituting (34)-(36) in (33), we get the system of N equations with N unknowns. 

                                         
1

( ) 2 0
N

i i

i

a h x


                                                 (37) 

solving (37) using Newton’s Method to obtain Haar wavelet coefficients 𝑎𝑖’s for N = 16 i.e.,  

[ -2  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0 ]. Substituting 𝑎𝑖’s, in (36) and obtained the required LHWCM 

solutions, which gives the exact solutions. Fig 3 shows the comparison of approximate solutions with the exact 

solutions, which justifies the efficiency of the LHWCM. 

 
Fig 3: Comparison of LHWCM with exact solution for N=64 of Example 3. 

 
CONCLUSION 
The aim of this paper, numerical solution of nonlinear fredholm integral equations using Leibnitz-Haar wavelet 

collocation method. Using lebnitz rule, converts integral equations into differential equations with initial conditions. 

The Haar wavelet function and its operational matrix were employed to solve the resultant differential equations. 

Our present method avoids the tedious work, it minimizes the computational calculus and supplies quantitatively 

reliable results. The results obtained by the proposed method have been compared with the existing methods and the 

exact solutions. The illustrative examples have been included to justify the efficiency and which confirms 

plausibility of new technique. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

x

N
u
m

e
ri
c
a
l 
S

o
lu

ti
o
n
 

 

 

LHWCM

EXACT

http://www.ijesrt.com/


 
[Shrilashetti*et al., 5(9): September, 2016]  ISSN: 2277-9655 

IC™ Value: 3.00  Impact Factor: 4.116 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [273] 

 

ACKNOWLEDGEMENTS 
The authors thank for the financial support of UGC’s UPE Fellowship vide sanction letter D. O. No. F. 14-

2/2008(NS/PE), dated-19/06/2012 and F. No. 14-2/2012(NS/PE), dated 22/01/2013. 

 

REFERENCES 
[1] D.D. Ganji, G.A. Afrouzi, H. Hosseinzadeh and R.A. Talarposhti, “Application of homotopy-perturbation 

method to the second kind of nonlinear integral equations,” in Physics Letters A, vol. 371, pp. 20–25, 2007. 

[2] A. Alipanah and M. Dehghan, “Numerical solution of the nonlinear Fredholm integral equations by 

positive definite functions,” in Appl. Math. Comp., vol. 190, pp. 1754–1761, 2007. 

[3] E. Babolian, F. Fattahzadeh and E. Golpar Raboky, “A Chebyshev approximation for solving nonlinear 

integral equations of Hammerstein type,” in Appl. Math. Comp., vol. 189, pp. 641–646, 2007.   

[4] A. H. Borzabadi and O. S. Fard, “A numerical scheme for a class of nonlinear Fredholm integral equations 

of the second kind,” in Jour. Comp. Appl. Math., vol. 232(2), pp. 449–454, 2009.  

[5] M. Razzaghi and Y. Ordokhani, “A Rationalized Haar Functions Method for Nonlinear Fredholm-

hammerstein Integral Equations,” in Int. Jour. Comp. math., vol. 79(3), pp. 37–41, 2002.  

[6] A. Barzkar, M.K. Oshagh, P. Assari and M.A. Mehrpouya, “Numerical Solution of the Nonlinear Fredholm 

Integral Equation and the Fredholm Integro-differential Equation of Second Kind using Chebyshev 

Wavelets,” in World  Appl. Sci. Jour., vol. 18(12), pp.1774-1782, 2012. 

[7] M. S. Hashmi, N. Khan and S. Iqbal, “Optimal homotopy asymptotic method for solving nonlinear 

Fredholm integral equations of second kind,” in Appl. Math. Comp., vol. 218(22), pp. 10982–10989, 2012.  

[8] C. K. Chui, “Wavelets: A Mathematical Tool for Signal Analysis,” in SIAM, Philadelphia, PA, 1997. 

[9] G. Beylkin, R. Coifman and V. Rokhlin, “Fast wavelet transforms and numerical algorithms I,” in 

Commun. Pure Appl. Math., vol. 44, pp. 141–183, 1991. 

[10] Ü. Lepik and E. Tamme, “Application of the Haar wavelets for solution of linear integral Equations,” in 

Ant. Turk–Dynam. Sys. Appl. Proce., pp. 395–407, 2005. 

[11] N. M. Bujurke, S. C. Shiralashetti and C. S. Salimath, “Numerical solution of stiff systems from non-linear 

dynamics using single term haar wavelet series,” in Inter. Jour. Nonlin. Dynam., vol. 51, pp. 595-605, 

2008.  

[12] N. M. Bujurke, S. C. Shiralashetti and C. S. Salimath, “Computation of eigenvalues and solutions of 

regular Sturm-Liouville problems using Haar wavelets,” in Jour. Comp. Appl. Math., vol. 219, pp. 90-101, 

2008.  

[13] N. M. Bujurke, S. C. Shiralashetti and C. S. Salimath, “An Application of Single Term Haar Wavelet Series 

in the Solution of non-linear oscillator Equations,” in Jour. Comp. Appl. Math., vol. 227, pp. 234-244, 

2010. 

[14] N. M. Bujurke, C. S. Salimath, R. B. Kudenatti and S. C. Shiralashetti, “A Fast Wavelet- Multigrid method 

to solve elliptic partial differential equations,” in Appl. Math. Comp., vol. 185, pp. 667-680, 2007. 

[15] Y. Mahmoudi, “Wavelet Galerkin method for numerical solution of nonlinear integral equation,” in Appl. 

Math. Comp., vol. 167(2), pp. 1119–1129, 2005. 

[16] V. Mishra, H. Kaur and R. C. Mittal, “Haar wavelet algorithm for solving certain differential, integral and 

integro-differential equations,” in Int. J. of Appl. Math. Mech., vol. 8(6), pp. 69-82, 2012. 

[17] S. Islam, I. Aziz and B. Sarler, “The numerical solution of second order boundary value problems by 

collocation method with the Haar wavelets,” in Math. comp. Model., vol. 52, pp. 1577-1590, 2010. 

[18] Ü. Lepik and E. Tamme, “Solution of nonlinear Fredholm integral equations via the Haar wavelet method,” 

in Proc. Estonian Acad. Sci. Phys. Math., vol. 56(1), pp. 17–27, 2007. 

[19] E. Babolian and A. Shahsavaran, “Numerical solution of nonlinear Fredholm integral equations of the 

second kind using Haar wavelets,” in Jour. Comp. Appl. Math., vol. 225(1), pp. 87–95, 2009. 

[20] I. Aziz and S. Islam, “New algorithms for the numerical solution of nonlinear Fredholm and Volterra 

integral equations using Haar wavelets,” in Jour. Comp. Appl. Math., vol. 239, pp. 333–345, 2013. 

[21] A.M. Wazwaz, “A First Course in Integral Equations,” in WSPC, New Jersey, 1997. 

[22] A. M. Wazwaz, “Linear and Nonlinear Integral Equations Methods and Applications”, Springer, 2011. 

[23] M. Rahman, “Integral equations and their applications”, WIT press, 2007. 

 

http://www.ijesrt.com/

